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ABSTRACT:
The purpose of this paper is to review the current literature 
regarding the pathophysiology of spinal cord injury and effects of 
polyunsaturated fatty acids in that injury. Different types of 
polyunsaturated fatty acids affect differently in spinal cord injury. ω-
3 fatty acids decrease the injury and improve the functional 
outcome. In contrast ω-6 fatty acids aggravate the injury and 
worsen the outcome. Although research regarding spinal cord 
injury remains limited, pathophysiology of spinal cord injury and 
effects of ω-3 and ω-6 fatty acids including mechanism of action 
through which they produce these effects in that injury were 
reviewed in this paper with available current literature. Most of the 
studies regarding spinal cord injury were done in animals. So, 
further studies should be conducted to know and prove these 
effects of the polyunsaturated fatty acids in spinal cord injury in 
human trials in future.     

INTRODUCTION
The Spinal Cord (SC) is part of the central nervous system (CNS) and 
extends from the brain passing through vertebral column from 
foramen magnum to the space between �rst and second lumbar 
vertebrae. It has motor and sensory functions, neural circuits and 
can coordinate certain re�exes. Spinal Cord Injury (SCI) is damage to 
the spinal cord that results in a loss of function (motor or sensory). 
Functional impairment (disability) like weakness, loss of sensation 
and devastating psychological problems can be produced by SCI. 
There is no treatment for SCI at present (Beattie et al 2002b). 

Pathophysiology of Spinal Cord Injury
Events that occur during SCI have been studied in experimental 
animal models (Beattie et al., 2002b). Common models used in SCI 
research are contusion injury (Tator, 1995; Young, 2002), concussion 
(Wrathall JR et al., 1985), compression of the cord (Rivlin AS et al., 
1977) and spinal cord ischemia (Watson BD et al., 1986). Contusion 
injury model is most commonly studied. One disadvantage of these 
experimental models is they are not reproducible (Khan M et al., 
1983).   Pathological sequences that occur during SCI are divided in 
to two phases, 
1.  Primary injury
2.  Secondary injury (Tator and Fehlings, 1991)
                                                     
Primary Injury 
Primary Injury occurs immediately at the site of impact called 
epicenter. Mechanical forces at the site of impact produce neuronal 
cell rupture and a hemorrhagic zone of necrosis (due to rupture of 
endothelial cell membranes). No gross damage is visible at site of 
lesion immediately after injury except hemorrhage of gray matter in 
SC. Direct cell death occurs at the site of injury. Hemorrhage mainly 

localizes to gray matter as it is highly vascular and soft in consistency 
(Tator, 1995).  Tissue disruption due to primary injury is proportional 
to amount of force transferred to the spinal cord during impact 
(Blight AR et al., 1986). 

Secondary Injury
Primary injury instigates a series of biochemical, vascular and 
in�ammatory events that cause secondary injury which further 
exacerbates neuronal damage in SCI. In�ammatory events can 
continue up to 4 days post trauma (Natasha Olby, 1999). Secondary 
injury is an auto destructive process mediated by a variety of active 
lipid metabolites and reactive oxygen species produced in response 
to tissue injury (Faden 1983). Within a few hours (2-8h) after injury, 
gray matter hemorrhage expands,  numerous petechial 
hemorrhages and edema occurs in the white matter (Guth et al., 
1999). Grossly, hemorrhage with cellular debris is visible up to 1 
week at the site of injury. Later small cavities and �nally cystic 
regions surrounded by glial scar tissue appear at site of injury 
(Beattie et al., 2002b). In chronic cases, atrophy of the cord occurs. 

Figure below shows the gross events that occur during SCI.

Secondary Injury is mediated by:
1.  Damage caused by free radicals and vascular abnormalities
2.  Biochemical events
3.  Apoptosis and necrosis

1. Damage caused by vascular abnormalities and lipid peroxidation:
After acute injury, local and systemic vascular abnormalities which 
develop over several hours cause ischemia and necrosis of the 
injured section of the spinal cord (Janssen LAA, 1991; Coughlan AR 
1993). Grey matter neurons are more vulnerable to ischemic injury 
than white matter neurons due to their high metabolic 
requirements (Senter HJ et al., 1979).  

Surprisingly after a period of hypoperfusion, blood supply to spinal 
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cord drastically increases for some time which leads to exacerbation 
of secondary injury due to production of oxygen free radicals 
(Lukacova et al., 1996).   

2. Biochemical events:
Biochemical events that cause secondary SCI involve activation of 
an excitatotoxic cascade, cellular in�ammatory response and 
uncontrolled glutamate release. Activation of excitatotoxic cascade 
leads to activation of Phospholipase-A2 (PLA-2) (Fleming et al., 
2006). Immediately after SCI PLA-2 activity was increased and 
remained elevated even up to 7 days postinjury (Lin NK et al., 2006). 
The mechanism by which the PLA-2 activity increases is unclear. It 
may be due to intracellular calcium in�ux subsequent to injury, 
which activates PLA-2 causing hydrolysis of membrane 
phospholipids to produce arachidonic acid (AA) (Stokes et al., 1983; 
Young et al., 1986). 

3. Cell death
Ischemia, lipid peroxidation by oxygen free radicals (reactive 
oxygen species) and glutamate excitotoxicity cause cell death 
through different mechanisms such as necrosis or apoptosis after 
SCI in human beings (Emery et al., 1998). Cells at the site of impact 
(epicenter) undergo necrosis due to severe trauma. 

 Effect of Polyunsaturated Fatty Acids (PUFA) in SCI
Polyunsaturated fatty acids are lipids that contain more than one 
double bond in their structure. PUFAs are structural components of 
phospholipids, which are the main constituents of cell membranes.
There are different types of PUFAs like omega (ω)-3 PUFA, omega-6 
PUFA and omega-9 PUFAs. ω-3 PUFAs include the essential fatty 
acids alpha-linolenic acid (ALA). ω-3 PUFAs also include 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). 
Alpha-linolenic acid is the biosynthetic precursor of DHA and EPA. 
The ω-6 PUFA studied primarily is Arachidonic acid (AA). Oleic acid is 
a ω-9 PUFA. This paper will review the effects of ω-3 PUFAs and AA in 
SCI.

Effect of ω-3 PUFAs in SCI:
ω-3 PUFAs have a neuroprotec�ve effect (Laurite et al., 2000; 
Blondeau et al., 2002). ALA, DHA and EPA ( -3 PUFAs) have an�-ω
inflammatory and neuroprotec�ve effects (Mori et al., 2004).  Most of 
these effects were studied using DHA. ALA is biosynthe�c precursor of 
DHA, EPA.  ALA or DHA treatment 30 min a�er hemisec�on of spinal 
cord resulted in decreased lesion size, increased neuronal and 
oligodendrocyte survival and improved locomotor func�on.  
Neuroprotec�ve effects of ALA may be mediated, at least in part, by 
different mechanisms other than conver�ng to DHA (Demar et al., 
2005). ALA has affinity for potassium channels (such as TREK and 
TRAAK) and ac�vates those channels (Lauritzen et al., 2000). 

Bene�cial effects of eicosapentaenoic acid (EPA)
Eicosapentaenoic acid (EPA) is a biosynthetic precursor of DHA and 
has anti-in�ammatory and neuroprotective properties in animal 
models of neuroin�ammation (Taepavarapruk et al., 2010). 
Administration of EPA intravenously 30 min after compression 
injury of spinal cord in rats resulted in decreased axonal injury; 
improved neuronal outcome and reduced extent of secondary SCI. 
Bolus i.v administration of 250 nmol/kg DHA have produced similar 
effects in rat SCI (Siew-Na Lim et al., 2010). Neuroprotective effects of 
DHA and EPA are mediated partly by their metabolites.                      

CONCLUSION
Pathophysiology of SCI involves mainly primary and secondary 
injury. Primary injury is irreversible and is due to traumatic insult or 
shear forces which leads to tissue disruption, vascular abnormalities 
and necrotic cell death. Secondary injury is mediated through 
excitotoxicity of glutamate, lipid peroxidation and damage caused 
by free radicals and in�ammatory mediators like eicosanoids. All 
these �nally cause apoptotic cell death. Secondary injury can be 
reduced by  ω-3 PUFA supplementation both in the form of bolus 
and chronic maintenance of a preparation enriched in ω-3 fatty 

acids. Duration and the dose of supplementation have to be 
investigated in future. Bene�cial effects in the management of SCI 
by reducing in�ammation, lipid peroxidation and oxidative stress 
have been observed using ω-3 fatty acids (ALA, DHA and EPA). ω -3 
PUFAs have signi�cant neuroprotective effect and a pro-
regenerative potential. Eggs, �sh, oils and algae contain high 
quantities of DHA. Maternal diets rich in �sh are associated with 
reduced risk for CP in offspring (Petridou et al., 1998). 
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