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ABSTRACT. 
Summary
Chron�c �nfect�ons are controlled by a var�ety of mechan�sms, 
�nclud�ng the �nduct�on of ox�dat�ve stress. Some v�ral �nfect�ons 
reduce the ab�l�ty to defend aga�nst pro-ox�dant stra�ns, espec�ally 
�n l�ver cells. Ox�dat�ve and n�trosat�ve stress can damage cellular 
membranes, d�srupt m�tochondr�al funct�on, alter gene express�on, 
promote the apoptos�s and necros�s of hepatocytes, and �ncrease 
fibros�s �n d�verse acute and chron�c l�ver d�seases.
Chron�c �nfect�ons caused by the hepatotrop�c v�ruses hepat�t�s B 
v�rus and hepat�t�s C v�rus are the ma�n r�sk factors for the 
development of hepatocellular carc�noma. Desp�te the obv�ous 
cl�n�cal �mportance of v�rus-assoc�ated hepatocellular carc�noma, 
the underly�ng molecular mechan�sms are not fully understood. 
Ox�dat�ve stress plays an �mportant role �n carc�nogenes�s, 
espec�ally w�th DNA les�ons caused by ox�dat�ve damage 
add�t�onally there are strongly l�nked to the development of many 
cancers, �nclud�ng hepatocellular carc�noma. Many stud�es have 
shown that both hepat�t�s B v�rus and hepat�t�s C v�rus cause hepat�c 
ox�dat�ve stress.

Introduct�on
Ox�dat�ve stress (OS) �s tr�ggered when the concentrat�on of oxygen 
spec�es �n the extracellular or �ntracellular env�ronment exceeds 
ant�ox�dant defenses. It can also be descr�bed as �rregular redox 
s�gnal�ng and control (1). Normally �n all of our body cells have a 
balance �n the ox�dat�on/reduct�on system that �s cruc�al
to the cells' surv�val. If th�s balance breaks down for any reason, 
e�ther the ox�dant levels �ncrease or the ant�ox�dant levels decrease, 
wh�ch �s termed a state of “OS”. It �s harmful to the cell. The structure 
of macromolecules �n the cell, such as DNA, l�p�d, prote�n breaks 
down �n the ox�dat�ve stress cond�t�ons (2, 3). OS causes ox�dat�ve 
damage to the structure of b�omoleculs, thereby alter�ng the�r 
phys�olog�cal funct�ons. To prevent the harmful effects of react�ve 
oxygen spec�es (ROS), b�olog�cal systems have developed a var�ety 
of detox�ficat�on mechan�sms us�ng a large number of small 
molecules, pept�des and enzymes, l�ke glutath�one (GSH) or 
superox�de d�smutase (SOD), respect�vely. OS also tr�ggers the 
n�trosat�ve stress caused by react�ve n�trogen spec�es (RNS) and thus 
results �n cellular s�gnall�ng deter�orat�on and cellular damage. The 
results of the stud�es reported that ox�dat�ve and n�trosat�ve DNA 
damage was seen �n carc�nogenes�s areas, �ndependent of the 
et�ology of the d�sease (4). ROS and RNS are produced by 
m�tochondr�al electron transport or by other enzyme systems 
conta�n�ng many ox�do reductases (such as NADPH ox�dase wh�ch �s 
cr�t�cal for the bacter�c�dal act�on of phagocytes) �n all cells types, 
�nclud�ng hepatocytes (5). Researchers have reported that ox�dat�ve 
stress may lead to an �ncrease �n calc�um leakage �n the endoplasm�c 
ret�culum (ER) lumen and that the same occurs �n ER stress.  Increase 
�n calc�um concentrat�on �n cytosol also �ncreases m�tochondr�al 
ROS product�on  (1). Many OS related �llnesses have been reported 

by S�es (6) �n 1985. Some of the most stud�ed d�seases are 
neurodegenerat�ve d�seases (Alzhe�mer, Park�nson, and others) (2, 
7 ,  8 ) ,  c e l l u l a r  a g � n g  ( 9 ) ,  c a r d � o v a s c u l a r  d � s e a s e s 
(hypercholesterolaem�a, heart fa�lure, hypertens�on, myocard�al 
�nfarct�on, �schem�a/reperfus�on �njury, and atheroscleros�s), and 
patholog�es �nvolv�ng chron�c �n�ammat�on (10, 11). As a result, OS 
�s now seen as a major suspect �n the pathogenes�s of a w�de 
spectrum of d�sease and cancer. Chron�c �nfect�ons caused by 
factors such as hepat�t�s B v�rus  (HBV) and hepat�t�s C v�rus (HCV) are 
the ma�n r�sk factors for the onset and progress�on of hepatocellular 
carc�noma (HCC)  (12). Over the world, up to 80% of HCC can be 
attr�buted to HBV or HCV �nfect�on. The results of the study �nd�cate 
that although the v�ral prote�ns themselves �nd�cate that they 
contr�bute d�rectly to tumor format�on, the underly�ng mechan�sms 
rema�n uncerta�n (13). There are �ncreas�ng ev�dence that the v�ral 
prote�ns of HBV and HCV may themselves contr�bute to a state of 
chron�c OS �n �nfected hepatocytes. OS has great �mportance for 
both �nfect�ous d�seases and non- �nfect�ous d�seases. Stud�es of 
redox b�ology have prov�ded a better understand�ng of ox�dat�ve 
stress (14). The react�ve molecules tend to nonspec�fically ox�d�ze 
the bas�c b�olog�cal macromolecules �n �ts env�ronment and thus 
cause acute cell damage or cause gradual deter�orat�on of 
�mportant cell funct�ons. Thus, O2 �s the bas�s of aerob�c metabol�sm 
and ROS product�on, a consequence of aerob�c metabol�sm, �s often 
assoc�ated w�th deleter�ous effects. In add�t�on, ROS, RNS, and 
react�ve sulfur spec�es can promote pathogenes�s through cell 
s�gnal�ng. By mod�fy�ng or part�c�pat�ng �n d�fferent s�gnal paths 
these react�ve spec�es can modulate gene express�on, cell adhes�on, 
cell metabol�sm, cell cycle and cell death, thus contr�but�ng to 
pathogenes�s. For example, OS may �nduce the prol�ferat�on of 
hepat�c stellate cells, TGF-β and collagen synthes�s. Th�s l�kely plays 
an �mportant role �n the development of l�ver fibros�s assoc�ated 
w�th the hepat�t�s v�rus �nfect�on. Furthermore, OS  �n hepat�t�s 
pat�ents may contr�bute to the development of hepat�c steatos�s 
and the progress�on of fibros�s. The hepat�c metabol�sm of 
b�olog�cal tox�ns and med�c�nal agents �s assoc�ated w�th �mpa�red 
hepatocyte b�ochem�stry and �ncreased ROS and free rad�cals. It has 
been reported that redox �mbalance and OS, causes subcl�n�cal 
an�cter�c hepat�t�s (acute, recurrent, or chron�c), necro�n�ammatory 
hepat�t�s, c�rrhos�s and carc�noma ⁽�⁵ �⁷⁾.

The a�m of th�s rev�ew was to clar�fy the role of OS �n hepat�t�s B and C 
so that �ts results could contr�bute to a better understand�ng of 
these d�seases and �ts �mproved treatment or cure.

Hepat�t�s B
HBV �s a DNA hepadnav�rus w�th a 25- to 180-day �ncubat�on per�od. 
It �s est�mated that 5% of the world populat�on have hepat�t�s B. 
Although �t has been 50 years s�nce the d�scovery of the Austral�an 
Ant�gen by, Professor Baruch Samuel Blumberg, the hepat�t�s B v�rus 
st�ll affects approx�mately 350 m�ll�on �nd�v�duals around the world 
and �s respons�ble for the deaths of about one m�ll�on people 
annually. It has been that great progress �n the prevent�on, 
d�agnos�s, and treatment of hepat�t�s B �n the past few decades;
however, there �s not enough ev�dence to prevent or el�m�nate the 
d�sease. In 1983, the product�on of the first hepat�t�s B vacc�ne was 
prom�s�ng �n controll�ng and prevent�ng the d�sease �n the control of 
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the d�sease. In the follow�ng years, w�th the product�on and 
development of the first ant�v�ral drugs, th�s po�nt of v�ew became 
even stronger (18, 19). ROS (such as superox�de, hydrogen perox�de, 
s�nglet oxygen, and hydroxyl rad�cals) and RNS, wh�ch are �nduced 
by var�ous endogenous (e.g., m�tochondr�a, enzymes, etc.) and 
exogenous (e.g., chem�cals, tobacco, ultrav�olet rays, etc.) factors 
lead to w�despread ox�dat�ve damage to d�fferent b�omolecules 
�nclud�ng l�p�ds, prote�ns, and DNA (2). ROS and RNS are h�ghly 
unstable and short-l�ved spec�es; although these molecules have 
been great cellular s�gnal�ng, they are part�cularly d�ff�cult to d�rect 
measure. Therefore, to detect the�r ox�dat�on status, we can measure 
�nd�rectly, wh�ch prote�ns, l�p�ds, and DNA are damaged by the 
ROS/RNS. 

L�p�d perox�dat�on
The l�p�ds �n cell membranes produce many of the react�ve products 
such as malond�aldehyde (MDA) upon ox�dat�ve stress. Many 
stud�es have dedected that the presence of l�p�d perox�dat�on �n 
hepat�t�s B �nfect�on (18). MDA has been evaluated as a marker of 
l�p�d perox�dat�on product �n these stud�es. 

MDA changes other molecules to produce novel ox�dat�on-spec�fic 
ep�topes that takes the attent�on and �n�ammatory react�on of the 
�nnate �mmune system. It has been found that MDA �s also to attract 
an �mmune system prote�n called complement factor H.  Th�s factor 
stops the uptake of MDA-mod�fied prote�ns by macrophages after 
b�nd�ng to MDA. Th�s �s demonstrated by neutral�z�ng the 
�n�ammatory effects of MDA �n the mouse model (20). It was 
founded s�gn�ficantly h�gher �n pat�ents w�th hepat�t�s B �nfect�on 
compared to healthy �nd�v�duals (21, 22). We also found MDA values 
  cons�stent w�th these outcomes �n the HBV pat�ent group (23). 
Moreover, �n our study MDA levels were not correlated w�th 
b�ochem�cal parameters, necro-�n�ammatory act�v�ty, fibros�s score 
or v�ral load �n subjects w�th CVH-B �nfect�on. Some stud�es have 
reported that a correlat�on between MDA levels and alan�ne 
am�notransferase (ALT) (21, 22, 24, 25), HBV-DNA ( 21, 26), total and 
d�rect b�l�rub�n (27). Accord�ng to these results, l�p�d perox�dat�on 
and �ts products can be sa�d to act�vate hepat�c stellate cells and lead 
to act�ve fibrogenes�s. However, Sever� et al.  has been showed that 
although of HBV repl�cat�on produced OS, �t d�d not s�gn�ficantly 
affect l�p�d perox�dat�on product levels �n the�r �nv�tro model study 
(28). Prev�ous stud�es �n th�s field have generally assessed plasma 
and erythrocyte levels of l�p�d perox�dat�on products. In future 
stud�es, �t would be more useful to �nvest�gate l�p�d perox�dat�on 
product concentrat�ons �n the hepat�c t�ssue

Prote�n Ox�dat�on
Increased ox�dat�ve stress can damage prote�ns w�th var�ous 
mechan�sms.  N�trotyros�ne, Ox�dases, prote�n hydrox�des and 
carbonyl der�vat�ves have been stud�ed as prote�n ox�dat�on 
products. Prote�n ox�dat�ve products are more stable and su�table 
markers than l�p�d ox�dat�on of OS. In add�t�on, prote�n ox�dat�on 
byproducts can prov�de valuable clues about the or�g�n and sever�ty 
of ox�dat�ve stress. For example, n�trotyrosyl res�dues are produced 
by HOCl and �nd�cate the presence of n�tr�c ox�de and superox�de or 
cholortyros�ne res�dues �n the presence of neutroph�ls and / or 
monocytes (29, 30). N�trotyros�ne �s a product of peroxyn�tr�te 
med�ated tyros�ne n�trat�on, wh�ch �s an �nd�cat�on of �ncreased 
peroxyn�tr�te format�on and n�trosat�ve stress. Our study showed 
that no s�gn�ficant d�fference between the plasma n�trotyros�ne 
levels of healthy �nd�v�duals and chron�c v�ral hepat�t�s B pat�ents 
(23). However, one study performed by Meng et al. demonstrated a 
s�gn�ficant �ncrease �n the serum n�trotyros�ne levels of pat�ents w�th 
chron�c hepat�t�s B (31). All of �n these stud�es OS parameters have 
been detected �n samples sera or plasma. However, �n v�ral l�ver 
pat�ents, the plasma or serum levels may not re�ect accumulat�on of 
n�trotyros�ne �n the hepat�c t�ssue. In add�t�on, �t has been reported 
that �ntrahepat�c n�trotyros�ne accumulat�on �s present �n v�ral l�ver 
d�seases, but not �n non-v�ral d�seases, and a stat�st�cally s�gn�ficant 
relat�onsh�p �s found between the amount of �ntrahepat�c NTY and 
the sever�ty of v�ral l�ver d�sease (32). On the other hand �n our study, 

�t was detected that plasma NTY levels d�d not correlate w�th HAI, 
fibros�s score or v�ral load. Taşdelen et al has been performed that a 
s�gn�ficant carbonyl level �ncrease was �dent�fied �n chron�c act�ve 
and �nact�ve hepat�t�s B pat�ents compared w�th the controls. They 
also have been noted a m�ld to moderate correlat�on between HBV 
DNA and carbonyl levels, wh�ch may �nd�cate that several degrees of 
OS occur �n hepat�t�s B �nfect�on (26). In a study performed by 
Popad�uk et al has been detected s�gn�ficantly enhanced plasma 
carbonyl levels �n ch�ldren w�th chron�c hepat�t�s B �nfect�on (33). 
Add�t�onally �ncreased plasma carbonyls were also �dent�fied �n 
pat�ents w�th HBV-related HCC (34). For th�s reason, the 
measurement of prote�n ox�dat�on products �s of great value. The 
�ncrease �n the level of each product may be a gu�de �n eluc�dat�ng 
the underly�ng pathogenes�s of the d�sease. Th�s �s why prote�n 
ox�dat�on needs to be stud�ed further. There �s no s�ngle method for 
measur�ng prote�n ox�dat�on and a separate method �s appl�ed for 
each parameter.

DNA ox�dat�on
OS can produce a var�ous of DNA damage, wh�ch can lead to 
mutat�ons and defects �n genome structure. Ol�nsk� et al has been 
showed that 8-oxo-7, 8-d�hydro-2'-deoxyguan�ne (8-oxo-dG) �s the 
most su�table to be measured as an ox�dat�ve DNA marker  (35). In a 
study done by Sh�moda et al.  reported an  �ncreased format�on of 8-
hydroxydeoxyguanos�ne (8OHdG) �n chron�c hepat�t�s pat�ents 
l�vers (36). It has been found that an �ncrease �n the ox�dat�ve DNA 
damage �n pat�ents w�th CVHB as the d�sease progressed from the 
earl�er to the later stages and eventually led to HCC.  Hepat�c oxo8dg 
levels were h�gher at advanced stages than from CVHB pat�ents w�th 
no fibros�s (37). K�tada et al. showed that chron�c HBV pat�ents had 
extens�ve DNA damage �n l�ver t�ssues by 8OHDG �mmuno-label�ng 
(38). Ur�nary 8OHDG levels were also �ncreased �n pat�ents w�th 
chron�c hepat�t�s (39). The hepat�c 8OHdG levels from the t�ssue 
samples of CVHB �nd�cated extens�ve DNA ox�dat�on occurr�ng �n 
the l�ver, Add�t�onally th�s hepat�c 8OHdG react�v�ty was strongly 
correlated w�th ALT, AST, HBV-DNA t�ters, and age (respect�vely r = 
0.506, 0.515, 0.540 and - 0.559) �n CVHB pat�ents (40). Although the 
results of these stud�es �nd�cate the presence of DNA ox�dat�on and 
damage �n HBV, there �s a need to work more focused on DNA 
ox�dat�on.

R O S - P r o d u c � n g  E n z y m e s  a n d  R O S / R N S  P r o d u c t � o n
ROS/RNS Product�on
ROS/RNS spec�es, wh�ch or�g�nate from ox�dat�ve or n�trosat�ve 
stress are h�ghly unstable. So �t �s d�ff�cult to measure d�rectly. There 
are a few study measured ROS/RNS spec�es product�on �n pat�ent 
w�th HBV �n the l�terature. A study by Bhargava et al. reported 
�ncreased ROS levels �n lymphocytes of chron�c and occult  hepat�t�s 
B pat�ents (41). It has been reported that �ncreased NO levels �n 
CVHB. But Guler et al.  d�d not find any s�gn�ficant d�fferences 
compared to healthy controls (42). In add�t�on Tsa� et al �nd�cated 
that there �s a s�gn�ficant �ncrease �n superox�de an�on rad�cals �n 
HCC pat�ents assoc�ated w�th HBV (43). Nagoev et al had been seen 
that th�s an�ons were �ncreased also �n the leukocytes of pat�ents 
w�th CVHB (44)

It �s �mportant to d�sclose correlat�ons between ROS / RNS 
product�on and hepat�t�s B d�sease act�v�ty. 

ROS-Produc�ng Enzymes
Mult�ple enzymes, �nclud�ng cytochrome P450, perox�somal 
ox�dases, cyclooxygenases, l�pooxygenases, and the n�cot�nam�de 
aden�ne d�nucleot�de phosphate (NADPH) ox�dases, are assoc�ated 
w�th the format�on of ROS. Such as NADPH ox�dase (NOX fam�ly), 
myeloperox�dase (MPO) and xanth�ne ox�dase enzymes can 
generate ROS/RNS spec�es. Detect�on of the act�v�t�es of these 
enzymes �n hepat�t�s B pat�ents w�ll prov�de a better understand�ng 
of the role of ox�dat�ve and n�trosat�ve stress �n th�s �nfect�on (45). In 
the meant�me, �t should be noted that the enzymes that produce 
ROS are more �mportant.

Myeloperox�dase
Myeloperox�dase (MPO) �s a lysosomal heme prote�n that �s 
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abundant �n granules of human �n�ammatory cells such as 
act�vated neutroph�ls, macrophages and monocytes. MPO acts as a 
master enzyme �n the generat�on of a range of ROS by catalyz�ng the 
convers�on of hydrogen perox�de (H2O2) to spec�es �nclud�ng OH, 
ONOO−, hypochlorous ac�d (HOCl), and NO2. MPO-der�ved ROS can 
then mod�fy l�p�ds, l�poprote�ns and prote�ns. MPO enzyme act�v�ty 
�s read�ly measurable, so �t �s  one of the prom�s�ng b�omarkers of OS 
(45).

We have been seen that s�gn�ficantly decreased plasma MPO levels 
were �n pat�ents w�th hepat�t�s B when compared to healthy 
controls. However, th�s d�fference was not correlated w�th v�ral load, 
necro�n�ammatory act�v�ty or fibros�s score �n the l�ver (23).  A study 
by Tasdelen et al. revealed a s�gn�ficant decrease �n the mean plasma 
MPO levels �n HBV pat�ents compat�ble w�th our result and th�s 
decrease was shown to have a s�gn�ficant negat�ve correlat�on w�th 
the HBV DNA levels �n both act�ve and �nact�ve hepat�t�s B pat�ents 
(26).  The plasma of hepat�t�s B pat�ents was used �n these stud�es 
and MPO levels �n hepat�c t�ssue samples were not measured. 
Cons�der�ng the excess�ve amount of ox�dat�on �n pat�ents w�th 
hepat�t�s B, presumably very h�gh levels of plasma MPO may be 
expected. Therefore, th�s unexpected result could probably be 
attr�buted to the s�te of sampl�ng or cause the sever�ty and 
progress�on of the v�ral d�sease. But there are also con��ct�ng results 
�n the l�terature.  A group of �nvest�gators found a s�gn�ficant 
�ncrease �n plasma MPO act�v�t�es �n HBV-assoc�ated c�rrhot�c 
pat�ents and found no s�gn�ficant d�fference between healthy 
controls and CHBV pat�ents. There was also a pos�t�ve correlat�on 
between plasma MPO act�v�ty and l�ver fibros�s (46). These results 
suggest that MPO plasma levels may be �nd�cat�ve of d�sease 
progress�on. Thus, plasma enzyme act�v�ty levels of pat�ents may 
not �ncrease s�gn�ficantly unt�l c�rrhos�s occurs. Guler et al.  detected 
that a s�gn�ficant �ncrease �n serum MPO act�v�t�es was observed �n 
chron�c act�ve and �nact�ve hepat�t�s B compared to healthy 
controls. Ezyme act�v�t�es have been also pos�t�vely correlated w�th 
the pat�ents' DNA and ALT levels (42). As a result, further extens�ve 
stud�es are needed to clar�fy the exact state of the MPO �n hepat�t�s B.
Hepat�t�s B and Ant�ox�dants Le Châtel�er pr�nc�ple, one of the most 
�mportant laws of chem�stry, emphas�zes that a system �n balance 
w�ll rema�n �n balance as long as �t �s not d�sturbed. In normal 
phys�olog�cal cond�t�ons, the human body prov�des �ts own balance 
by us�ng ox�dants and ant�ox�dants. OS occurs when th�s balance �s 
�mpa�red by some env�ronmental factors. OS �s a d�sorder that leads 
to a potent�al cellular damage. Most cells can tolerate a m�ld degree 
of OS, because they have suff�c�ent ant�ox�dant defense capac�ty 
and repa�r systems, wh�ch recogn�ze and remove molecules 
damaged by ox�dat�on. It �s known that OS �s assoc�ated w�th more 
than over 100 d�seases (47). Our ant�ox�dant defense system 
cons�sts of two synerg�st�c compartments: endogenous 
ant�ox�dants (e.g., superox�de d�smutase, glutath�one perox�dase, 
catalase, glutath�one etc.)  and exogenous ant�ox�dants. It �s 
reported that our �mmune system should be supplemented w�th 
exogenous ant�ox�dants such as v�tam�n C, v�tam�n E and 
caroteno�ds (48). Detect�on of ant�ox�dant status �n hepat�t�s B and a 
better understand�ng of ant�ox�dant supplementat�on therapy w�ll 
gu�de the progress�on of the d�sease. There are many stud�es 
show�ng ant�ox�dant status �n CVHB pat�ents. We showed that 
erythrocyte SOD, catalase, glutath�one perox�dase act�v�t�es, GSH 
and serum total ant�ox�dant response levels were s�gn�ficantly lower 
�n pat�ents than �n controls. Add�t�onally, no s�gn�ficant correlat�on 
was found between these markers and v�ral load, necro-
�n�ammat�on, and fibros�s of the l�ver �n pat�ents w�th chron�c v�ral 
hepat�t�s (49). GSH �s synthes�zed �n all types of eukaryot�c cells and 
espec�ally found �n l�ver. It �s cons�dered as one of the most 
�mportant ant�-ox�dants.  There are a few stud�es �n the l�terature 
that found reduced levels of GSH �n erythrocytes of CVHB pat�ents 
(25, 26, 50, 51). Tasdelen et al has been also found that a negat�ve 
correlat�on between HBV DNA and erythrocyte GSH levels (26). 
Moreover Kundu et al noted a s�gn�ficant negat�ve correlat�on ALT, 
AST, GGT, and ALP w�th erythrocytes glutath�one levels �n CVHB 
pat�ents (25). Some researchers have reported �ncrease levels of 

plasma GSH �n acute hepat�t�s B pat�ents (51). Because of th�s 
unexpected �ncrease, there may be compensatory mechan�sms 
seen at the beg�nn�ng of a d�sease.  It has been reported that desp�te 
the �n�t�al �ncrease �n plasma glutath�one levels �n acute hepat�t�s B 
pat�ents, �t began to fall as the d�sease became more severe and 
chron�c. Also �n pat�ents w�th chron�c hepat�t�s B and severe acute 
hepat�t�s B, erythrocyte GSH were decrease w�th plasma glutath�one 
levels decrease s�multaneously (51). We and some researchers have 
been reported decreased levels of glutath�one perox�dase (49, 26, 
52) wh�le there was an �ncrease �n another study (53). It has been 
reported that low SOD and catalase act�v�ty and elevated l�p�d 
perox�dat�on levels �n chron�c B hepat�t�s pat�ents �nd�cate defic�ent 
ant�ox�dant defense (53). The erythrocyte SOD act�v�t�es of hepat�t�s 
B pat�ents were lower than controls, and the results of these stud�es 
were compat�ble (49, 26, 33). But there are con��ct�ng results 
regard�ng serum SOD act�v�t�es (31, 43, 54, 55). Catalase, wh�ch �s an 
�mportant ant�ox�dant enzyme, has been measured �n both 
erythrocyte and serum levels. The results are not compat�ble (26, 49, 
53, 56). The total ant�ox�dant capac�ty parameter wh�ch w�th worked 
d�fferent methods (TAS, TAC) was found to been decreased �n all 
hepat�t�s B pat�ent groups (49, 21, 57-59). There was detected a 
decrease �n the products of l�p�d perox�dat�on (as MDA levels) and an 
�ncrease �n the ant�ox�dant enzymes, such as CuZnSOD and GSH-Px 
�n HBV pat�ents after treatment w�th �nterferon-α and lam�vud�ne, 
compared w�th pretreatment  (22). There may be factors causes of 
contrad�ctory outcomes �nclude methodology, sample s�ze, 
stat�st�cal analys�s, d�sease progress�on, control group d�fference, 
etc. However, these controvers�al outcomes are �nd�cat�ve of a 
complex OS process. More extens�ve stud�es w�ll be needed to 
determ�ne the role of d�fferent ant�ox�dants �n hepat�t�s B.

Hepat�t�s C
The HCV �nfect�on �s a major b�omed�cal problem, w�th an 
�ncubat�on per�od of 11–150 days �s transm�tted pr�mar�ly v�a 
�nfected blood more than 150 m�ll�on humans �nfected worldw�de, 
wh�ch accounts for approx�mately 3–4 m�ll�on new cases of v�ral 
hepat�t�s each year. D�fferently from the other hepat�t�s v�ruses (A, B, 
and E), more than 80% of HCV pat�ents become chron�c. It �s known 
that chron�c HCV �nfect�on �s assoc�ated w�th l�ver �n�ammat�on 
(hepat�t�s), fibros�s, c�rrhos�s and hepatocellular carc�noma ( 60).  
Hence, HCV �nfect�on �s the lead�ng cause of l�ver transplantat�on 
worldw�de. There �s no effect�ve vacc�ne aga�nst HCV and current 
treatments are only part�ally effect�ve.  Proper d�agnos�s of �nfected 
pat�ents �s essent�al for the effect�veness of the treatment (61). Th�s 
was reported that HCV produces more ROS than other hepat�t�s 
v�ruses and pat�ents w�th chron�c hepat�t�s C have over 80% chances 
of develop�ng chron�c d�seases as compared to pat�ents of hepat�t�s 
A, B and E ( 62). Hepat�c OS, a prom�nent feature of chron�c hepat�t�s 
C �nfect�on, �s seen �n a number of �n�ammatory l�ver d�seases (40). 
HCV �nfect�on �s known to cause act�vat�on of the �mmune system 
and macrophages, and therefore ROS can be produced by blood 
cells.  Cell damage caused by OS �s known to play an �mportant role 
�n the pathophys�ology of HCV.  There are also stud�es show�ng that 
chron�c HCV �nfect�on �s caused by m�tochondr�al dysfunct�on and 
OS (63).

OS can also occur when HCV components are taken up by the l�ver 
kupffer cells. Act�ve kupffer cells have been reported to contr�bute 
to the k�ll�ng of hepatocytes by var�ous mechan�sms. These cells 
enhance not only the local product�on of cytok�nes such as TNF-α 
but also ROS product�on  (64). However, the mechan�sms by wh�ch 
Kupffer cells cause OS and l�ver damage are not fully understood. 
Damaged hepatocytes release ROS �n the extracellular 
env�ronment, lead�ng to the act�vat�on of hepat�c stellate cells. It �s 
well known that the largest part of the ROS produced �n the cells �s 
der�ved from m�tochondr�a. M�tochondr�a, wh�ch are the power 
plants of the cells, are the ma�n targets of HCV v�rus. It was also 
detected that HCV produces ultrastructural changes �n these 
organelles and causes ox�dat�ve damage and a reduct�on �n 
m�tochondr�al DNA copy number, �n both hepatocytes and 
lymphocytes of �nfected pat�ents (65). In HCV, �ncreases �n NADPH 
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ox�dase have been reported to �ncrease ROS and RNS, wh�ch may 
lead to chron�c �n�ammat�on �n these pat�ents (15). Although HCV 
core and other prote�ns pr�mar�ly local�zes to the ER, �t also 
assoc�ates w�th m�tochondr�a. Ox�dat�ve DNA damage �ncreases 
chromosomal aberrat�ons assoc�ated w�th cell transformat�on, and 
OS plays a role �n the development of HCC assoc�ated w�th HCV.  For 
example, �ncreased ROS / RNS levels have been found to promote 
DNA damage and hepatocellular carc�noma development by 
�ncreas�ng mutat�ons �n cellular genes (66). In an�mal model�ng and 
culture systems stud�es, �t has been observed that HCV- expressed 
prote�ns d�rectly destroy the m�tochondr�al resp�ratory cha�n w�th 
overproduct�on of ROS. Thus the structure and funct�on of 
m�tochondr�a may change �n �nfected hepatocytes. Thus, �t �s 
suggested that the m�tochondr�a's structure and funct�on may 
change of �nfected hepatocytes  (62). The transcr�pt�onal and 
repl�cat�on mechan�sms of m�tochondr�a are upregulated so that 
m�tochondr�al  b�ogenes�s �ncreases w�th m�tochondr�al genome 
repl�cat�on �n OS cond�t�ons. In these damaged m�tochondr�a can be 
�nh�b�ted by the electron transport cha�n, wh�ch can lead to ROS 
accumulat�on (67). Three mechan�sms are known to contr�bute to 
HCV-assoc�ated OS; These �nclude (�) m�tochondr�al dysfunct�on; (��) 
ER stress and (���) �mmune cell-med�ated ox�dat�ve bursts. The HCV 
core prote�n �s known to be strong �n th�s respect and and �ts 
express�on �s suff�c�ent to produce OS (68). It �s reported that HCV 
repl�cat�on �nduces OS. Ox�dat�ve stress �s thought to be a cl�n�cal 
feature assoc�ated w�th hepat�t�s C �nfect�on, l�ttle �s known about 
how the v�rus can surv�ve �n a h�ghly ox�dat�ve env�ronment. OS 
adaptat�on �s pred�cted to be the key to the surv�val of the v�rus (69). 
There are some stud�es that use ant�ox�dants �n cl�n�cal tr�als �n the 
treatment of HCV pat�ents (70-72). Many d�fferent OS markers have 
been stud�ed �n hepat�t�s C pat�ents, �nclud�ng l�p�d perox�dat�on 
products and ox�d�zed prote�n and ROS/RNS produc�ng enzymes 
(73, 74,  and 23). Some �nvest�gators have found that h�gh levels of 
OS markers correlate w�th the sever�ty of the d�sease �n hepat�t�s C 
pat�ents and that OS decreases after successful treatment (73,75).

L�p�d perox�dat�on
MDA release and hepat�c damage by membrane l�p�d perox�dat�on 
were found to be �nduced by GSH deplet�on �n HCV pat�ents. De 
Mar�a et al have shown that (�) l�p�d ox�dat�on occurs �n chron�c 
hepat�t�s C, (��) ox�dat�ve damage has �ncreased levels of MDA, and 
(���) MDA levels correlate w�th d�sease act�v�ty. These results are �n 
accordance w�th the find�ngs of other �nvest�gators and our result 
(23, 76). We detected also that plasma MDA levels were s�gn�ficantly 
h�gher �n the CVH-C pat�ents than the controls ( p < 0.001). 
Add�t�onally �n pat�ents w�th CVH-C, Spearman's correlat�on analys�s 
showed no s�gn�ficant correlat�on between plasma MDA,  v�ral load ( 
HCV-RNA), fibros�s score and HAI (p > 0.05). Increased l�p�d 
perox�des may be chemotact�c effect for neutroph�ls lead�ng to 
�ncreased �n�ammat�on, result�ng �n ox�dant-med�ated �njury �n the 
l�ver.

Prote�n and DNA Ox�dat�on
L�p�d perox�dat�on/ advanced ox�dat�on prote�n products and 8-
hydroxy deoxyguanos�ne (8-OHdG) are b�olog�cal molecules 
mod�fied w�th ROS.  These molecules were found at s�gn�ficantly 
h�gher levels �n PBMCs �n HCV pat�ents compared to healthy 
controls  (76- 79 and others). In CHC pat�ent l�ver samples were 
detected a s�gn�ficant �ncrease of 8-OHdG levels (38). Recently, 
several mechan�sms have been proposed that may contr�bute to the 
replacement of cell fate by form�ng ROS-�nduced apoptos�s tumor 
occurrence �n the an�mals. F�rst, OS leads to DNA damage (�nclud�ng 
8-OHdG) and accumulat�on of mutat�ons. L�u et al reported that 
n�trat�on of tyros�ne, �n both prote�n-bound form and free am�no 
ac�d form, can read�ly occur �n cells under ox�dat�ve/n�trat�ve stress 
(80).

N�trotyros�ne
V�ral hepat�t�s has been found to be assoc�ated w�th an �ncreased 
�NOS express�on, and there �s also a susp�c�ous relat�onsh�p w�th 
�NOS express�on and d�sease sever�ty. Increased �NOS express�on 

�ncreases the amount of RNS, wh�ch �s assoc�ated w�th DNA damage, 
and NO plays a role in the development of HCC as DNA damage 
causes cancer development. García-Monzón et al demonstrated 
that the intrahepatic accumulation of NTY - a marker of  
peroxynitrite attack on cellular proteins - was positively related to 
the severity of liver damage in CVH (32). Recently a direct correlation 
has been documented between iNOS induction and hepatitis C 
virus ribonucleic acid (HCV-RNA) titer and also hepatocyte 
nitrotyrosine, plasma nitrosothiols and histological severity of liver 
damage.  Therefore, in addition to OS, it is thought that nitrosative 
stress may play a role in the pathogenesis of chronic viral hepatitis 
(80). In our study there were no statistically signi�cant differences 
between the serum NTY levels of the patients with chronic HCV and 
the controls (p > 0.05). In addition correlation analysis showed no 
signi�cant correlation between plasma NTY with viral load (HCV-
RNA), �brosis score and HAI (p > 0.05).

ROS-Producing Enzymes and ROS/RNS Production
The NADPH ox�dase enzyme fam�ly �s an add�t�onal source of ROS �n 
HCV-�nfected cells. Th�s enzyme group cons�sts of seven 
transmembrane enzymes that part�c�pate �n electron transport 
from the membranes and thus produce superox�de an�on or H2O2  
(81). Stud�es �n CHC pat�ents have shown that levels of some defense 
enzymes such as heme oxygenase (HO-1) (82)  and th�oredox�n (Trx) 
(83) are �ncreased.  It has also been found that HCV-med�ated 
�nfect�ons are also a threat to the body's ant�ox�dant systems. On the 
other hand, researchers detected decreased levels of many other 
ant�ox�dant defense enzymes, such as manganese or Cu/Zn 
superox�de d�smutase (SOD), glutath�one reductase, and 
glutath�one perox�dase, �n the per�pheral blood of the pat�ents of 
CHC (76, 84)  although an �ncrease was also reported  (85) .

Myeloperox�dase
MpO �s a mult�funct�onal enzyme �nvolved �n both host defense and 
t�ssue damage at �n�ammatory s�tes. It produces not only ox�dat�ve 
equ�valents, but contr�butes also to the regulat�on �n general 
response to �nvad�ng m�croorgan�sms  (45). It has been known that 
HCV �nfect�on �s to causes autophagy,  and OS and alter Ca+2 
s�gnal�ng. For th�s reason, �t �s thought that �t changes mt structure 
and funct�ons (86). Overall, there �s ev�dence that several HCV 
prote�ns d�rectly �nteract w�th m�tochondr�a �n hepatocytes and 
alter the�r funct�on �n metabol�sm, redox balance, ROS scaveng�ng 
and apoptos�s.  Nevertheless,  the underly�ng molecular 
mechan�sms of phys�cal �nteract�ons re�ect how these �nteract�ons 
translate �nto chang�ng mt funct�ons and the role of altered mt 
funct�ons �n the v�ral l�fe cycle and the pathogenes�s assoc�ated w�th 
chron�c hepat�t�s C are st�ll not fully understood. In our study plasma 
MPO levels were s�gn�ficantly lower �n the CHC pat�ents than the 
controls (p < 0.001). However Spearman's correlat�on analys�s 
showed no s�gn�ficant correlat�on between plasma MPO w�th v�ral 
load (HBV-DNA and HCV-RNA), fibros�s score and HAI ın pat�ent 
group (p>0.05) (23). Bekhett et al. reported that t�ssue MPO act�v�ty 
�ncreases s�gn�ficantly �n pat�ents w�th CVH-C than the controls, 
whereas plasma MPO act�v�ty does not (87). Do Carmo et al has 
found that pat�ents �nfected by HCV w�th HCC had h�gher MPO 
plasma levels than pat�ents w�thout HCC. MPO levels �n pat�ents 
w�th HCC have been found approx�mately three fold more often 
than pat�ents w�th chron�c HCV or severe fibros�s These study results 
support the �dea that MPO m�ght have a role �n the HCC 
development (88).

HCV and Ant�ox�dants
It �s known that ROS / RNS plays a role �n the onset and progress�on 
of the d�sease and �ts mal�gnant transformat�on �n pat�ents w�th 
hepat�t�s C. However, the results of stud�es �n wh�ch ant�ox�dants are 
used �n therapy of an�mals and of pat�ents w�th HCV are 
contrad�ctory. Researchers have reported that ant�ox�dants may be 
employed �n 4 d�fferent ways 1) to �mpa�r �n HCV repl�cat�on 2) to 
�mprove l�ver enzyme levels, 3) to protect aga�nst l�ver cell damage 
and 4) to render �nterferon ant�-v�ral therapy more effect�ve. HCV 
�nduces OS v�a several molecular pathways, for example 
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m�tochondr�al damage and altered metal homeostas�s; It �s d�ff�cult 
to th�nk of an ant�ox�dant approach w�th such a w�de spectrum of 
act�on. Ant�ox�dants such as N-acetylcyste�ne   (NAC), v�tam�n E, or 
ascorb�c ac�d, when used alone, have been shown to �mprove l�ver 
damage �n pat�ents w�th HCV but not affect HCV t�tres (88). It has 
been shown to exh�b�t reduced levels of GSH and other ant�ox�dants 
as well as reduced total ant�ox�dant act�v�ty �n blood and l�ver 
b�ops�es �n a large proport�on of CHC pat�ents (89-91, 77). We have 
been detected decreased levels of GSH and TAS �n blood of CHC 
pat�ents (49). Decreased GSH may be a consequence of l�ver 
damage. Stud�es have shown that GSH levels �n l�ver and c�rculat�on 
of pat�ents w�th chron�c HCV c�rrhos�s are reduced (80). Proteom�c 
analyzes revealed an upregulat�on of ant�ox�dant enzymes �n the 
early phase (F1 to F3), but not �n the late stages of fibros�s (92). It has 
been reported that low catalase and SOD act�v�ty and elevated l�p�d 
perox�dat�on levels �n chron�c C hepat�t�s pat�ents �nd�cate defic�ent 
ant�ox�dant defense (53). It has been also d�splayed decreased levels 
of ant�ox�dant defense enzymes such as SOD, glutath�one 
reductase, catalase and glutath�one perox�dase were also often 
found �n blood of CHC pat�ent (49, 76, 84). Larrea et al has found that 
express�on of the same enzymes was not altered �n l�ver of the same 
pat�ents (93). Due to the role of OS �n HCV pathogenes�s, 
ant�ox�dants have been proposed to treat HCV pat�ents. For 
example, �n a cl�n�cal tr�al, normal�zat�on of l�ver enzymes was 
observed �n 44% of chron�c HCV pat�ents w�th elevated 
pretreatment levels, us�ng a comb�nat�on ant�ox�dant therapy. In 
add�t�on h�stolog�cal �mprovement was also noted �n 36.1% of the 
pat�ents (72). However, �t �s not known exactly how the �ncreased 
ROS / RNS affects HCV repl�cat�on. New �n v�tro cell culture stud�es 
support�ng the ent�re l�fe cycle of HCV are thought to help clar�fy the 
complex relat�onsh�p between OS, HCV, and pathogenes�s. In 
another study decrease �n v�ral load w�th �mprovement �n l�ver 
enzymes and h�stology was detected �n pat�ents rece�v�ng oral and 
�ntravenous comb�ned ant�ox�dant treatment (92). Although the 
results of these stud�es demonstrate the benefic�al effects of 
ant�ox�dants further stud�es are needed to properly eluc�date the 
types, amounts, and routes of ant�ox�dant drug adm�n�strat�on that 
are most appropr�ate. We bel�eve that th�s ant�v�ral therapeut�c 
strategy should not be overlooked, desp�te the low eff�cacy 
ach�eved us�ng ant�ox�dant therap�es. Cont�nued research �s also 
needed �n the areas of ant�ox�dant therapy, to assess the effect of OS 
on the d�sease and thus the potent�al of ant�ox�dant treatment �n the 
attenuat�on of d�sease progress�on.

D�scuss�on
A var�ous ROS spec�es are produced as a product of cellular 
metabol�sm and play an �mportant role �n cell s�gnal�ng and 
regulat�on of cytok�ne, growth factor and hormone act�on, 
transcr�pt�on, �on transport,  neuromodulat�on, �mmune 
modulat�on and apoptos�s (94). In part�cular, �t �s known that �t plays 
a fundamental role �n the normal funct�on�ng of the �mmune system 
and �n the prol�ferat�on of T cells and �n �mmunolog�cal defense (95). 
There �s no doubt that OS plays an �mportant role �n HBV 
pathogenes�s, therefore, the comb�nat�on of var�ous mechan�sms 
can produce new solut�ons to combat�ng the OS �n HBV �nfect�on. 
Although the presence of OS �n chron�c hepat�t�s C and the ab�l�ty of 
mult�ple v�ral prote�ns and repl�cons to produce ROS have been 
clearly establ�shed the contr�but�on of OS to pathogenes�s �s st�ll 
unclear. Act�vated Kupffer cells st�mulate hepat�c stellate cells to 
release cytok�nes and chemok�nes and promote l�ver fibrogenes�s. 
Kupffer cells also release react�ve oxygen spec�es, n�tr�c ox�de and 
chemotact�c prote�ns, wh�ch st�mulate hepatocyte damage and 
�ncrease �n�ammatory response (96). NADPH  ox�dase enzyme can 
st�mulate the product�on of ROS �n hepat�c stellate cells, 
macrophages and hepatocytes. Th�s OS on the hepatocytes can 
damage deoxyr�bonucle�c ac�d (DNA), �nduce apoptos�s, promote 
the express�on of pro-�n�ammatory genes, enhance fibrogenes�s, 
and poss�bly tr�gger mal�gnant transformat�on (97). Induc�ble n�tr�c 
ox�de synthase (�NOS) may �ncrease hepatocyte tox�c�ty by 
�ncreas�ng n�tr�c ox�de product�on, and the nuclear factor kappa-
l�ght cha�n enhancer of act�vated B cells (NF-kB) can regulate �NOS 

product�on and OS (98). As a net result of these var�ous �nteract�ve 
cellular and molecular mechan�sms, t�ssue damage cont�nues and 
�ncreases the accumulat�on of extracellular matr�x collagen (99). 
Convent�onal treatment strateg�es should be mod�fied to focus on 
the prevent�on of hepat�c fibros�s and these changes should prov�de 
rap�d v�ral clearance and qu�ck complete suppress�on �n the l�ver 
�n�ammat�on  (100). Even �f the cell cytoplasm appears healthy, the 
cells may be under OS, so convent�onal methods used to determ�ne 
OS must be re-evaluated. Most �mportantly, solut�ons must be 
permanent.

Conclus�on
The role of OS �n chron�c hepat�t�s tr�ggered l�ver damage �s an 
�mportant area of research, part�cularly because that �nformat�on 
could be of major therapeut�c value �n protect�ng the l�ver. In the 
form of ROS and RNS, th�s OS can damage all of the cells present �n 
the l�ver, �nclud�ng hepatocytes, Kupffer cells, stellate cells, and 
endothel�al cells, by �nduct�on of �n�ammat�on, �schem�a, fibros�s, 
necros�s, apoptos�s, or mal�gnant transformat�on through damage 
to l�p�ds, prote�ns, and/or DNA. Desp�te the common OS �n hepat�t�s 
B, ant�ox�dant therapy �s not always cons�dered a treatment strategy, 
because �f ant�ox�dants are not used at the r�ght t�me and �n the r�ght 
comb�nat�on they can act l�ke proox�dants. For th�s reason, large-
scale stud�es w�ll be needed to determ�ne appropr�ate ant�ox�dant 
treatments. Natural compounds are known to be potent 
ant�ox�dants, and some are able to b�nd Cu and Fe and thus control 
redox potent�als. It �s known that OS plays an �mportant role �n the 
pathogenes�s of HCV, therefore the comb�nat�on of var�ous 
mechan�sms descr�bed �n stud�es can be used to obta�n new 
solut�ons of OS �n HCV �nfect�on. OS b�omarkers (l�p�d perox�dat�on, 
DNA damage, some prote�n �solat�on / express�on) help to define a 
phys�olog�cal state over t�me. Measurement of b�omarkers allows 
for the eluc�dat�on of the presence of ox�dat�ve stress, but does not 
�nd�cate the cause of th�s stress. The presence of OS may suggest 
causal�ty, but us�ng b�omarkers alone may lead to only a correlat�on, 
not causal�ty. A few of the stud�es ment�oned �n th�s rev�ew 
�nd�cated that there �s a correlat�on between OS markers and l�ver 
pathology. Causal�ty can be deduced from these results, but not as 
proven. As the bas�c �nformat�on about the role of OS �n the 
development of the d�sease and the underly�ng mechan�sms of 
ROS-related cell tox�c�ty cont�nues to emerge these find�ngs w�ll 
prov�de gu�dance for more rat�onal ant�ox�dant therapeut�c 
approaches.
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